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1
MONTE CARLO METHOD FOR LAPLACE
INVERSION OF NMR DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention is generally related to methods and systems
relating to nuclear magnetic resonance (NMR) measurements
and, more particularly, analysis of NMR data using in part a
Monte Carlo sampler (or random sampler) that maybe used in
oilfield operations.

2. Background of the Invention

Nuclear magnetic resonance (NMR) has been a known
laboratory technique and has become an important tool in
formation evaluation. NMR well logging background infor-
mation can be found, for example, in U.S. Pat. No. 5,023,551
to Kleinberg et al., is incorporated herein by reference in its
entirety.

In reviewing aspects of NMR, it is known that NMR relies
upon the fact that the nuclei of many chemical elements have
angular momentum (“spin”) and a magnetic moment. In an
externally applied static magnetic field, the spins of nuclei
align themselves along the direction of the static field. This
equilibrium situation can be disturbed by a pulse of an oscil-
lating magnetic field (e.g., a RF pulse) that tips the spins away
from the static field direction. The angle through which the
spins are tipped is given by 6=yB,1,/2, where v is the gyro-
magnetic ratio, B, is the linearly polarized oscillating field
strength, and t,, is the duration of the pulse. Tipping pulses of
ninety and one hundred eighty degrees are most common.

It is noted after tipping, two things occur simultaneously.
First, the spins process around the direction of the static field
at the Larmor frequency, given by w,=yB,, where B, is the
strength of the static field and vy is the gyromagnetic ratio. For
hydrogen nuclei, y/2n=4258 Hz/Gauss, so, for example, in a
static field of 235 Gauss, the hydrogen spins would process at
a frequency of 1 MHz. Second, the spins return to the equi-
librium direction according to a decay time, T,, which is
known as the spin-lattice relaxation time. Because this spin-
lattice relaxation occurs along the equilibrium direction, T, is
also referred to as the longitudinal relaxation time constant.

Also associated with the spin of molecular nuclei is a
second relaxation time, T,, called the spin-spin relaxation
time. At the end of a ninety-degree tipping pulse, all the spins
are pointed in a common direction perpendicular, or trans-
verse, to the static field, and they all process at the Larmor
frequency. However, because of small fluctuations in the
static field induced by other spins or paramagnetic impurities,
the spins process at slightly different frequencies, and the
transverse magnetization dephases with a time constant T,,
which is also referred to as the transverse relaxation time
constant.

A standard technique for measuring T, both in the labo-
ratory and in well logging, uses a RF pulse sequence known as
the CPMG (Carr-Purcell-Meiboom-Gill) sequence. As is
well known, after a wait time that precedes each pulse
sequence, a ninety-degree pulse tips the spins into the trans-
verse plane and causes the spins to start processing. Then, a
one hundred eighty-degree pulse is applied that keeps the
spins in the measurement plane, but causes the spins, which
are dephasing in the transverse plane, to reverse direction and
to refocus. By repeatedly reversing the spins using a series of
one hundred eighty degree pulses, a series of “spin echoes”
appear. The train of echoes is measured and processed to
determine the irreversible dephasing time constant, T,. In
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well logging applications, the detected spin echoes have been
used to extract oilfield parameters such as porosity, pore size
distribution, and oil viscosity.

In theory, other laboratory NMR measurements may be
applied in well-logging to extract additional information
about the oilfield, but in practice, the nature of well-logging
and the borehole environment make implementing some
laboratory NMR measurements difficult. For example, inver-
sion recovery is a common laboratory technique for measur-
ing T,. In an inversion recovery measurement, a one-hundred
eighty degree pulse is applied to a system of spins aligned
along the static magnetic field in order to reverse the direction
of the spins. The system of spins thus perturbed begins to
decay toward their equilibrium direction according to T,. To
measure the net magnetization, a ninety-degree pulse is
applied to rotate the spins into the transverse plane and so
induce a measurable signal. The signal will begin to decay as
the spins dephase in the transverse plane, but the initial ampli-
tude of the signal depends on the “recovery time” between the
one-hundred eighty degree pulse and the ninety-degree pulse.
By repeating this experiment for different recovery times and
plotting the initial amplitude of the signal against recovery
time, T, may be determined. While this technique has been
successfully used in the laboratory for several years, inver-
sion recovery is very time consuming, and those of ordinary
skill in the art recognize that inversion recovery may be
unsuitable for well logging applications.

Other inversion algorithms are available for analyzing
NMR well-logging data. The earliest methods provided one-
dimensional T, (transverse relaxation time) spectra from
single measurement data assuming multi-exponential decays.
Examples of these methods include the “Windows Process-
ing” scheme disclosed by Freedman (U.S. Pat. No. 5,291,
137) and the “Uniform Penalty” method (Borgia, G. C.
Brown, R.J. S. and Fantazzini, P., J. Magn Reson. 132,65-77,
1998) Subsequently, acquisition schemes were devised com-
prising multiple measurements with different wait-times.
Processing techniques were then introduced to analyze these
measurements. One such method is disclosed by Freedman
(U.S. Pat. No. 5,486,762).

U.S. Pat. No. 6,462,542 issued to Venkataramanan et al.
and U.S. Pat. No. 6,570,382 issued to Hurlimann et al. are
examples of other NMR methods developed to measure spin
relaxation and diffusion in 1D measurements, 2D measure-
ments, and multidimensional measurements. The measure-
ment data is often analyzed by numerical Laplace inversion
algorithm to obtain spectra of relaxation parameters, e.g. T,
and T, and diffusion constant (D). For example, a 1D experi-
ment (such as a CPMG measurement), T, spectrum is
obtained. For a 2D experiment, a joint spectrum of two
parameters (e.g. T,-T,, D-T,) is obtained. Several algorithms
have been published for 1D experiments, for example by: (1)
S. W. Provencher, CONTIN: A General Purpose Constrained
Regularization Program for Inverting Noisy Linear Algebraic
and Integral Equations, Comput. Phys. Commun. 27, 229
(1982); (2) G. C. Borgia, R. J. S. Brown, and P. Fantazzini,
Uniform-penalty Inversion of Multi-exponential Decay Data,
J. Magn. Reson. 132, 65 (1998); and (3) E. J. Fordham, A.
Sezginer, and L. D. Hall, Imaging ult-exponential Relaxation
inthe (y;logtl) plane, with application to clay Itration in rock
cores, J. Magn. Reson. Ser. A 113, 139 (1995). However,
these algorithms are not easily extended to handle 2D data set
due to the huge requirement on computer memory.

U.S. Pat. No. 6,462,542 by Venkataramanan et al., dis-
closes new measurement schemes such as “Diffusion Edit-
ing”, in which the NMR data is substantially orthogonalized
with regard to relaxation and diffusion attenuation, a process-
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ing technique based on a separable response kernel has been
disclosed (see Venkataramanan, L., Song, Y-Q., and Hurli-
mann, M., U.S. Pat. No. 6,462,542). This method does not
involve any model for the different fluid responses. Instead, it
analyses the data in terms of unbiased spectra of relaxation
times and diffusion rates. It is attractive in that it requires no
apriori knowledge regarding the fluid properties and in favor-
able cases provides simple graphical results that are easily
interpreted even by non-experts. A potential drawback of the
inversion is that its accuracy is in part dependent upon the
separability of the response kernels. This can limit the range
of its applicability to measurements in which the NMR
response is substantially orthogonalized in each of the mea-
surement dimensions, for example, application of the method
to multiple CPMG sequences with different inter-echo spac-
ings.

Existing processing techniques also impose non-negativity
constraints on the individual spectral amplitudes and typi-
cally require selection of at least one regularization (smooth-
ing) parameter. The non-negativity condition, based on obvi-
ous physical grounds, renders those processing algorithms
inherently non-linear. Although not a problem in principle,
this places demands on the stability of the selected optimiza-
tion procedure and caution must be exercised to ensure
acceptable repeatability of inversion results for noisy data.
The noise issue is addressed by use of the regularization
parameter, which ensures that resulting spectra are smooth.
However, selecting an appropriate value for the regularization
parameter is not trivial. Despite the considerable body of
published work addressing the question of regularization
from a theoretical point of view (e.g. see references cited in
Borgia, G. C. Brown, R. J. S. and Fantazzini, P., J. Magn
Reson. 132, 65-77, (1998) and Venkataramanan, L., Song,
Y-Q., and Hurlimann, M., U.S. Pat. No. 6,462,542), in prac-
tice regularization remains largely subjective, sometimes
based only on the aesthetic appearance of the computed spec-
tra. Regularization is of particular importance in multi-di-
mensional inversions, since the spectra are generally grossly
underdetermined by the data and noise artifacts can easily
result. In addition, different regions of the spectra display
vastly different sensitivity to the input data. Failure to account
for these variations in sensitivity can lead to false or unreal-
istic peaks in the spectra which can easily be misinterpreted.

The inversion of noisy NMR T, echo data of a T, spectrum
is also widely recognized as an inherently non-unique process
(see R. Parker, Y-Q Song, Assigning uncertainties in the
Inversion of NMR Relaxation Data, J. Mag. Res. 174 (2005)
314-324.). An approach to quantifying this uncertainty is to
use, for example, Monte Carlo sampling. Measurement noise
is well described by an uncorrelated normal distribution.
When combined with the non-negativity constraint on T,
spectral values, this can lead to spectral values following a
non-negative normal distribution. G. Rodriguez-Yam dis-
closes samplers for truncated normal distributions of which
non-negative normal samples are a subset, however their
algorithms are grossly inefficient for the covariance matrices
present in MNR T, spectral inversion (see G. Rodriguez-Yam
et al., Efficient Gibbs’ sampling of truncated multivariate
normal with application to constrained linear regression,
Technical Report, Colorado State University 2004). The rea-
son for this and why it is not a practical method is that they are
based on Gibbs’ samplers that update the spectral estimate
just one T, component at a time. When all of the spectral
elements are fixed but one, that one has little room for change
without violating the noise constraints on the data. This
means that each spectral sample can only be slightly different
from the preceding sample, indicating a high degree of sta-
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tistical correlation and thus being an inappropriate solution
due to the very slow convergence. Thus, what are needed are
methods or systems that address all of the above noted prob-
lems and among other things, improve convergence as well as
open the door for the inversion of 2D NMR spectra.

Accordingly, there continues to be a general need for
improved NMR measurements and, in particular for the oil
and gas exploration industries, improved NMR methods that
can be used to extract information about rock samples and be
used in well-logging applications.

SUMMARY OF INVENTION

According to an embodiment of the invention, a method of
extracting information about a system of nuclear spins com-
prising: performing a plurality of Nuclear Magnetic Reso-
nance (NMR) measurements on the system of nuclear spins;
acquiring NMR data from each of the plurality of NMR
measurements; performing data inversion using an random-
sampler to generate an ensemble of spectra so as to extract
information about the system of nuclear spins; and analyzing
the performed random-sampler inversion results to extract
information about the system of nuclear spins.

According to an aspect of the invention, the method
includes the NMR data comprises NMR spin echoes.

According to an aspect of the invention, the method
includes the NMR data from each of the plurality of NMR
measurements are expressed as M (t,,t,)=/k(t,,T,,x,¥)f (%,
y)dxdy+E,(t,,T,), where M, (T,,T,) represents the NMR data;
k represents the kernel function; T, and T, are a first and a
second experimental parameters, respectively, associated
withthe NMR measurement; x and y are parameters related to
the system of spins; f,(x,y) is a joint probability density func-
tion of x and y; and E, (t,,T,) represents noise associated with
the NMR data.

According to an aspect of the invention, the method further
comprising discretizing the NMR data and expressing the
NMR data as M=KF+E, where matrices K contain entries
corresponding to k, respectively, and F and E represent dis-
cretized versions of f,(x,y) and E (t,,T,).

According to an aspect of the invention, the random-sam-
pler is a Monte Carlo sampler.

According to an aspect of the invention, the method
includes the extracted information about the system of
nuclear spins includes one or more characteristics of a fluid in
communication with a formation.

According to an aspect of the invention, the method
includes the generated ensemble of spectra includes one or
more spectra, such that the one or more characteristics of the
fluid are calculated from at least one spectrum of the one or
more spectra

According to an aspect of the invention, the method
includes the generated ensemble of spectra includes two or
more spectra, such that the one or more characteristics of the
fluid are calculated from each spectrum of the two or more
spectra.

According to an aspect of the invention, the method
includes analyzing the performed random-sampler inversion
results comprises determining one of a porosity function, a
bound fluid function or an unbound fluid function, associated
with the NMR data.

According to an aspect of the invention, the method
includes analyzing the performed random-sampler inversion
results comprises determining one of an oil saturation func-
tion or a log-mean T, function, associated with the NMR data
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According to an aspect of the invention, the method
includes the acquired NMR data is one of one dimensional
(1D), two dimensional (2D) or multi-dimensional.

According to another embodiment of the invention, a sys-
tem of interpreting and analyzing of Nuclear Magnetic Reso-
nance (NMR) data to characterize properties of a fluid in
communication with a subterranean environment (as used
hereinafter, the term “rock” can include earth, earth forma-
tion, and a portion of earth formation), the system compris-
ing: performing a plurality of NMR measurements on the
fluid so as to obtain NMR data; acquiring NMR data from
each of the plurality of NMR measurements; performing data
inversion using a Monte Carlo sampler to generate an
ensemble of spectra whereby characterized properties of the
fluid are determined; and analyzing the performed Monte
Carlo inversion results to characterize the properties of the
fluid.

According to another embodiment of the invention, a
method of extracting information about a fluid in a rock
comprising: (a) applying a sequence of magnetic field pulses
to the fluid, the sequence describe by at least two parameters,
wherein each parameter includes two or more settings; (b)
detecting magnetic resonance signals for each of the two or
more settings for each parameter; (c) expressing the detected
magnetic resonance signals as magnetic resonance signal
data; (d) performing data inversion using a Monte Carlo sam-
pler to generate an ensemble of spectra whereby character-
ized properties of the fluid are determined; (e¢) and analyzing
the performed Monte Carlo inversion results to characterize
the properties of the fluid in the rock.

According to an aspect of the invention, the method repeat-
ing steps (a) through (e) above incorporating at least one
different setting from the two or more settings for at least one
parameter of the at least two parameters.

According to an aspect of the invention, the method
includes a first parameter of the at least two parameters com-
prises a longitudinal relaxation time associated with the fluid.

According to an aspect of the invention, the method
includes the first parameter comprises a transverse relaxation
time associated with the fluid.

According to an aspect of the invention, the method
includes the first parameter comprises a diffusion sensitive
parameter whereby diffusion is determinable.

According to an aspect of the invention, the method
includes a second parameter of the at least two parameters
comprises a longitudinal relaxation time associated with the
fluid.

According to an aspect of the invention, the method
includes the second parameter comprises a transverse relax-
ation time associated with the fluid.

According to an aspect of the invention, the method
includes the second parameter comprises a diffusion sensitive
parameter whereby diffusion is determinable.

According to an aspect of the invention, the method
includes analyzing the performed Monte Carlo inversion
results comprises determining one of a porosity function, a
bound fluid function or a unbound fluid function, associated
with the NMR data.

According to an aspect of the invention, the method
includes analyzing the performed Monte Carlo inversion
results comprises determining one of a oil saturation function
or a log-mean T, function, associated with the NMR data.

According to an aspect of the invention, the method
includes the acquired NMR data being one of one dimen-
sional (1D), two dimensional (2D) or multi-dimensional.

According to another embodiment of the invention, a log-
ging apparatus comprising: at least one tool that is moveable
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through a borehole; a processor coupled with the at least one
tool, the processor being programmed with instructions
which, when executed by the processor, cause the at least one
tool to: perform a plurality of Nuclear Magnetic Resonance
(NMR) measurements on at least one region of investigation
within a formation surrounding the borehole; acquiring NMR
data from each of the plurality of NMR measurements; and
cause the processor to: perform data inversion using an Monte
Carlo sampler to generate an ensemble of spectra so as to
extract information about the at least one region of investiga-
tion within the formation surrounding the borehole; and ana-
lyze the performed Monte Carlo inversion results to extract
information about the at least one region of investigation
within the formation surrounding the borehole.

According to an aspect of the invention, the logging appa-
ratus includes acquiring NMR data is in real time and the
analysis process is continuous logging NMR data of the for-
mation.

According to an aspect of the invention, the logging appa-
ratus includes the results of the data inversion is communi-
cated to a earth surface in one of real time or stored on the at
least one tool for later communication.

According to an aspect of the invention, the logging appa-
ratus includes the acquired NMR data is one of one dimen-
sional (1D), two dimensional (2D) or multi-dimensional.

According to an aspect of the invention, the logging appa-
ratus includes the Monte Carlo inversion analyzes one of an
uncertainty of an inversion spectrum or other quantities
derived from the inversion spectrum.

According to an aspect of the invention, the logging appa-
ratus includes analyzing the performed Monte Carlo inver-
sion results comprises determining one of a total porosity
function or a fractional porosity function, associated with the
NMR data.

Further features and advantages of the invention will
become more readily apparent from the following detailed
description when taken in conjunction with the accompany-
ing drawings.

BRIEF DESCRIPTION OF DRAWINGS

The present invention is further described in the detailed
description which follows, in reference to the noted plurality
of drawings by way of non-limiting examples of exemplary
embodiments of the present invention, in which like reference
numerals represent similar parts throughout the several views
of the drawings, and wherein:

FIG. 1a illustrates the T, spectrum used to synthesize the
T, echo data in the inset, in accordance with an embodiment
of the invention;

FIG. 15 shows an aspect of the invention, illustrating the
large range of solutions which are indicated by the diversity of
the compatible spectra;

FIG. 2 illustrates an aspect of the invention, showing sam-
pler TN3 applied to the T, echo data shown in FIG. 1, gener-
ating 10,000 samples;

FIG. 3 shows an aspect of the invention, illustrating the
mean T, spectrum computed from 10,000 samples (using
TN3) for the data in FIG. 1;

FIG. 4 illustrates an aspect of the invention, showing a
histogram of total porosity, p, computed from 10,000 samples
(using TN3) for the data I FIG. 1;

FIG. 5 shows an aspect of the invention, illustrating a
histogram of unbound fluid volume pU, computed from
10,000 samples (using TN3) for the data I FIG. 1;

FIG. 6a illustrates a differences between Gibbs’ samplers
TN1 and TN2 for a two-dimensional sample problem;



US 9,052,409 B2

7

FIG. 65 shows the first 20 steps of the TN2 sampler starting
at the point (2, 6), indicating an improved mixing;

FIG. 7 illustrates eigenvalues of =0 (G7G)™* plotted for
FIG. 1 to indicate uncertainty can be effectively infinite along
most principle axes of covariance ellipsoid and small along
most of the remaining axial directions, indicating a high
degree of correlation;

FIG. 8 illustrates a samplers TN1 and TN2 applied to the T,
echo data of FIG. 1 generating 10,000 samples each, showing
correlation between samples for TN1 and TN2, respectively,
for spectral dimension 61 (T=0.266s);

FIGS. 9a and 95 show the conditional pdfs for T, spectral
dimensions (30,31) and (61,62), respectively, conditioned to
the least-squares spectral solution for the T, echo data shown
in FIG. 1; and

FIG. 10illustrates a routine that may be used in implement-
ing at least one embodiment of a method of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The particulars shown herein are by way of example and
for purposes of illustrative discussion of the embodiments of
the present invention only and are presented in the cause of
providing what is believed to be the most useful and readily
understood description of the principles and conceptual
aspects of the present invention. In this regard, no attempt is
made to show structural details of the present invention in
more detail than is necessary for the fundamental understand-
ing of the present invention, the description taken with the
drawings making apparent to those skilled in the art how the
several forms of the present invention may be embodied in
practice. Further, like reference numbers and designations in
the various drawings indicated like elements.

According to an embodiment of the invention, a method of
extracting information about a system of nuclear spins com-
prising: performing a plurality of Nuclear Magnetic Reso-
nance (NMR) measurements on the system of nuclear spins;
acquiring NMR data from each of the plurality of NMR
measurements; performing data inversion using a random-
sampler (or Monte Carlo sampler) to generate an ensemble of
spectra so as to extract information about the system of
nuclear spins; and analyzing the performed random-sampler
inversion results to extract information about the system of
nuclear spins.

OVERVIEW OF METHODS OF THE INVENTION

According to methods of the invention, the methods relate
to the analysis and/or interpretation of NMR data obtained in
wireline logging and logging while drilling. Further, the
methods can be used in a laboratory to analyze NMR data
obtained from core samples. Further, methods of the inven-
tion can be used in interpreting NMR logging data from
wireline tools such as CMR and MR Scanner, and LWD tools
(ProVision). It is also possible for the methods of the inven-
tion to be used at the surface with a well-site NMR analyzer
to study the cuttings and fluids from the well. A portable
NMR analyzer could also be used in conjunction with the
PVT system to analyze live crude oils and/or gases. As noted
above, NMR can be used in oilfield logging services to ana-
lyze rock properties (e.g. porosity, bound fluid, pore sizes,
capillary curve, permeability) as well as the properties of the
reservoir fluids (e.g. identifying oil/gas/water, oil viscosity,
oil composition). These properties are obtained by evaluating
some functionals of the spectra. For example, porosity can be
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obtained by integrating the entire spectrum; bound fluid can
be obtained by integrating the T, spectrum below some cutoff
T, value.

Methods of the invention, among other things, describe a
new Laplace inversion algorithm that is conceptually differ-
ent from all previous known methods. For example, the
method uses a Monte Carlo method (sampler) (or a random-
sampler) to generate a large ensemble of samples (e.g. T,
spectra) that can all statistically fit the experimental data. For
example, for a given T, decay data, 10,000 samples maybe
generated by the Monte Carlo sampler. The entire ensemble
of the spectral samples (or called spectra) can be considered
as the solution of the Laplace inversion problem. The petro-
physical properties can then be obtained from the ensemble
by averaging the appropriate integrals of all spectra. In fact, at
least one advantage of methods of the invention is that not
only can the average properties be obtained, the error of the
quantity can also be determined from the statistics of the
results from all the spectra.

Further, methods of the invention can overcome such prob-
lems as the Rodriguez-Yam samplers noted above by improv-
ing convergence as well as speeding up the overall process,
among other things. For example, the Rodriguez-Yam sam-
plers (noted above) are truncated normal distributions of
which non-negative normal samples are a subset. Since, the
Rodriguez-Yam samplers are based on Gibbs’ samplers that
update the spectral estimate just one T, component at a time
(e.g., when all of the spectral elements are fixed but one), that
one has little room for change without violating the noise
constraints on the data. This means that each spectral sample
of Rodriguez-Yam samplers can only be slightly different
from the preceding sample, indicating a high degree of sta-
tistical correlation and thus results in being an inappropriate
solution due to the very slow convergence. The methods of the
invention, among other things, resolves these issues by simul-
taneously updating two neighboring spectral components at a
time, allowing changes due to one spectral component to be
offset by changes in its neighbor. Thus, a fast 2D sampler for
non-negative normal distributions can be created providing
for improved convergence by more than two orders of mag-
nitude over the known prior art methods. Also, another advan-
tage of using the present methods of the invention over the
known prior art is the capability for routine Monte Carlo
inversion of 1D NMR spectra along with the inversion of 2D
NMR spectra.

Finally, methods of the invention overcome the above-
mentioned known methods in the art, by providing methods
that (by non-limiting examples): 1) do not require artificial
parameters; 2) provide for an efficient Monte Carlo algorithm
that generates thousands of probable solutions; and 3) allow
for individual solutions to be obtained from probability dis-
tributions for quantities derived from the spectrum that can
include porosity and bound fluid, from which the statistical
properties for a solution can be analyzed. Thus, among other
things, it is the ability to characterize the uncertainty of such
quantities which is unique and overcomes and above-men-
tioned known methods in the art.

METHODS OF THE INVENTION

FIG. 1a illustrates the behavior of two approaches used for
simulated spin echo decay which will be later explained. The
spectrum and its associated simulated noisy data are also
shown in FIG. 1a. It is noted that in the study of heteroge-
neous-materials, both natural substances and manmade prod-
ucts, NMR spin relaxation spectra and diffusion constants are
often used as a finger-print of the molecular species, structure
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and dynamics. For example, water and crude oils present in
oil reservoirs can be distinguished by diffusion and relaxation
experiments (see R. L. Kleinberg, Well logging, in: Encyclo-
pedia of nuclear magnetic resonance, Vol. 8, Wiley, N.Y,
1996, pp. 4960-4969). Typically, spin relaxation and diffu-
sion are manifested as de-carrying signals. As noted above,
data analysis often involves Laplace inversion to obtain a
spectrum of relaxation times or diffusion constants. Such an
inversion is ill-conditioned in the sense that for a given set of
data with finite noise, many solutions will fit the data within
the statistics of the noise. The well-established methods, for
example, Tikonov regularization (see A. N. Tikhonov, V. A.
Arsenin, Solution of Ill-posed Problems, Winston and Sons,
1977), and the maximum entropy method (see J. Skilling,
Classic maximum entropy, in: J. Skilling (Ed.), Maximum
Entropy and Bayesian Methods, Cambridge, Kluwer, 1989,
pp- 45-52; and S. F. Gull, Developments in maximum entropy
data analysis, in: J. Skilling (Ed.), Maximum Entropy and
Bayesian Methods, Kluwer Academic, Dordrecht, 1989, pp.
53-71), find one solution that fits the data and satisfies some
other simultaneous constraint. This type of approach effec-
tively makes a choice of the class of solution based on inde-
pendent criteria. In the case of the regularization solution (as
discussed above), smoother spectra are preferred over more
spiky spectra. Different algorithms essentially use different
preferences and thus result in different “best” solutions. How-
ever, it is difficult to justify these choices. In order to illustrate
this, specific examples will be set-forth describing the multi-
plicity of the solutions.

NMR signals of T, decay in porous materials are well
modeled as a sum of decaying exponentials:

m@) " AD)exp(-/T)d log(T) AT)=0,

where m(t) is the signal as a function of time and f(T) is the
spectrum as a function of relaxation time T. In the following
we use the discrete form of this formula,

Eq. 1

m=Gf,f=0, Eq. 2
with vector m={m(t,), i=1, . . . , M}, vector f={{T)),
j=1, ..., N}, and matrix G={Gij=exp(-t,/T)Alog(T)}. The

principle commonly used in inversion is to use regression to
find a solution f, that fits the data “best” by some criteria. One
approach is to find the minimum misfit solution by least
squares:

fo = argminlm - GfI2, Eq. 3
fo=0

using the 1.2 norm. The solution to this problem is unique and
can be efficiently found using the non-negative least squares
algorithm (see C. L. Lawson, R. J. Hanson, Solving least
squares problems, Prentice-Hall, Englewood Cliffs, N.J.,
1974). These solutions tend to have only a small number of
non-zero elements (see R. L. Parker, Y.-Q. Song, Assigning
uncertainties in the inversion of NMR relaxation data, Journal
of Magnetic Resonance 174 (2005) 314-324). The position of
these “spikes” is sensitive to the noise, creating a spectral
solution that is not repeatable over different noise realiza-
tions. Another often used approach regularizes the least-
squares equations using

Jo = argmin(m - Gf P +lf 1), Eq. 4
0=
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where a is a scalar regularization parameter chosen to be just
large enough to make the solution stable in the presence of
noise.

Examples are given in FIG. 15 to illustrate the behavior of
these two approaches using a simulated spin echo decay. The
spectrum and its associated simulated noisy data are shown in
FIG. 1a. Two least-squares T, spectra resulting from separate
noise realizations with the same noise model are shown in
FIG. 15, demonstrating the sharpness of the peaks and the
sensitivity to noise realization. The true spectrum is overlain
as a dashed curve for comparison. The corresponding regu-
larized spectra are also overlain, showing good consistency
with respect to noise realization. Further, FIG. 1a shows the
T, spectrum used to synthesize the T, echo data in the inset.
The 100 T, spectral values are logarithmically spaced
between 0.0001 and 10 seconds (s). The 8192 echoes are
sampled at an echo spacing of 0.0002 s starting at 0.0002 s.
The noise standard deviation is 0.025 of the maximum echo
value. FIG. 15 compares the spiky spectrum evaluated by the
maximum likelihood method (results scaled to approximately
10% to fit on the plot) with the smooth regularized T, spectral
solution. The black dots are solutions for the data shown in
FIG. 1a, and the gray dots are solutions for the same data but
with a different noise realization. The original T, spectrum is
overlain as a dashed curve for comparison. All the curves
shown are presented at the same scale.

Still referring to FIGS. 1a and 15. A shortcoming of both
least squares and regularization approaches that is held in
common with all “best fit” solution approaches is that they
provide no indication of the uncertainty in the resulting T,
spectrum, i.e., they ignore the range of other spectral solu-
tions that are also compatible with the measurements. The
large range of such solutions is clearly indicated by the diver-
sity of compatible spectra shown in FIG. 14.

The Monte Carlo method is used with the methods of the
invention to probabilistically sample the range of solutions
that are consistent with the data. Then the statistical proper-
ties of these spectral solutions are examined. After demon-
strating that the T, spectral sampling problem is one of sam-
pling from a truncated multi-normal distribution, where the
truncation results from the non-negativity constraint, it can be
shown that the nature of the truncated multi-normal distribu-
tion precludes the use of efficient truncated normal samplers
already in the literature. It is then possible to present a new a
sampling algorithm that allows rapid sampling of T, spectral
solutions. This algorithm can be used to analyze the uncer-
tainty of the inversion spectrum and other quantities derived
from the spectrum. Compared to known prior art methods
relating to work on the uncertainty bounds of the T, spectrum
(see R. L. Parker, Y.-Q. Song, Assigning uncertainties in the
inversion of NMR relaxation data, Journal of Magnetic Reso-
nance 174 (2005) 314-324), the methods of the invention can,
among other things, provide for an estimate of the full prob-
ability density functions of the functionals of interest. The
details of the truncated normal samplers are further discussed
in the Truncated Multi-normal Samplers section below.

The inverse problem of determining f from a noisy mea-
surement of m is one of finding the values of f for which the
residuals e=m-Gf are compatible with the measurement
noise, i.e., the covariance of e should be consistent with the
measured noise covariance. It is important to emphasize that
an infinite number of solutions exist which satisfy this crite-
rion. The noise in T, signals is often of the simple form of an
uncorrelated normal distribution (see R. L. Parker, Y.-Q.
Song, Assigning uncertainties in the inversion of NMR relax-
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ation data, Journal of Magnetic Resonance 174 (2005) 314-
324). Thus the probability density function (pdf) of f, (), can
be expressed succinctly as

1 Eq. 5
#(f) o exp| 5 (m = GFY N m= G, £ 20, !

where A is a diagonal matrix containing the noise varianc,
versus time. Since the noise variance is often well approxi-
mated as constant in time for a single measurement, in the
following we simplify Eq. 5 with the approximation A=c71,
where o7 is the measured noise variance and I is the identity
matrix.

In the parlance of Bayesian inference, Eq. 5 is called the
likelihood function. It gives the probability of the measure-
ment, m, conditioned on a given model, f. This is usually
written as m(mlf). In Bayesian inference one would sample
from the posterior, wt(flm), which is related to s(mlf) through
Bayes’ rule: m(fim)ocm(mlf)m(f), where ni(f) is the prior. Here
we choose the prior to be constant, meaning that we are
sampling directly from the likelihood. An excellent tutorial
on Bayesian methods is given in the Sivia reference (see D. S.
Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd
Edition, Oxford University Press, New York, 2006).

One of the simplest methods for finding random samples
drawn from Eq. 5 is to use standard methods to first draw a
large number of samples from the multi-normal distribution
(without the non-negativity constraint), and then accept only
samples which satisfy f=0. However, this method is astro-
nomically inefficient for the T, spectral inversion problem
since the fraction of multi-normal samples that satisfy f=0 is
miniscule. It is important to account for the structure of the
multi-normal covariance matrix in order to achieve efficient
sampling.

Two Monte Carlo samplers in the literature for efficiently
solving the more general problem of sampling from a trun-
cated multi-normal distribution in high dimensions are (E.
Kermidas, S. Kaufman (Eds.), Efficient simulation from the
multivariate normal and Student-t distributions subject to
linear constraints, Computing Science and Statistics: Pro-
ceedings of the 23rd Symposium in the Interface, Interface
Foundation of North America, Fairfax, Va., 1991) and (G.
Rodriguez-Yam, R. Davis, L. Scharf, Efficient Gibbs sam-
pling of truncated multivariate normal with application to
constrained linear regression, Tech. rep., Colorado State Uni-
versity 2004). In the methods of the invention, truncation
reflects the non-negativity constraint in the T, inversion.
These two methods (TN1 and TN2) are Gibbs samplers (see
C. P. Robert, G. Casella, Monte Carlo Statistical Methods,
Springer, N.Y., 2004), for example, they sample an N-dimen-
sional pdf as a sequence of one-dimensional sampling prob-
lems. Gibbs’ samplers are particularly effective for truncated
multi-normal distribution because efficient algorithms are
available for each one-dimensional sampling problem.
Unfortunately, both methods perform poorly with the trun-
cated multi-normal distribution found in T, inversion. Further
details of the truncated normal samplers are discussed in the
Truncated Multi-normal Samplers section below.

In addressing the enhanced Gibbs’ sampler, called TN3,
the methods of the invention overcome the limitations of the
two Gibbs samplers mentioned above by making a modest
extension of the Gibbs’ sampling approach. As discussed in
more detail in the Truncated Multi-normal Samplers section
below, TN1 is limited because it is unable to traverse in big
steps along the major axes of the covariance ellipsoid, and
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TN2 is limited by the non-negativity constraint which causes
it to become “stuck in the corner.” We found that the simul-
taneous sampling of two parameters (T, and T,, ) in a two-
dimensional sampler can solve both problems. For further
details of the truncated normal samplers see the Truncated
Multi-normal Samplers section below.

For the NMR T, spectral inversion problem methods of the
invention have found it most effective to use adjacent spectral
dimensions in the two-dimensional Gibbs’ update steps. Only
one iteration of the slice sampler is used for each sample
update because it was found that using more did not improve
convergence. This is called algorithm TN3. Further consid-
erations for efficient implementation are presented in the
Two-dimensional Slice Sampler section below.

Algorithm TN3 was run on the T, data shown in FIG. 1a.
The run time to generate 10000 samples on a 3.2 GHz linux
desktop machine was approximately 4 seconds. The degree of
mixing (statistical independence between samples) is inves-
tigated, as it was for samplers TN1 and TN2 (as discussed in
the Truncated Multi-normal Samplers section below), by
examining the correlation between samples for dimension 61
a dimension of large correlation for TN1 and TN2. Compar-
ing this correlation plot, given in FIG. 2, with those for TN1
and TN2 for the same data (as further discussed in the Trun-
cated Multi-normal Samplers section below), shows that the
TN3 samples are only weakly correlated after about ten
samples instead of the thousands of samples needed for de-
correlation with TN1 and TN2.

FIG. 3 illustrates the mean T, spectrum computed from
10000 samples using TN3 for the data in FIG. 1a which is
displayed as a solid black line curve. For comparison, the
original T, spectrum is overlain in short dashes and the regu-
larized spectral solution as long dashes. The dotted curve
shows the mean spectrum for data containing only noise (no
signal) with the same noise statistics as the other curves.
Although the position and width of the mean spectral peak
agrees well with the original spectrum, the spectral values
corresponding to small T, are upwardly biased. This upward
bias increases with diminishing T and is produced by two
factors. First, Eq. 1 indicates that only data with small t are
used to determine f(T) for small values of T. Having fewer
data constraints at small T results in greater uncertainty. Sec-
ond, the non-negativity constraint forces this uncertainty to
be expressed as positive spectral values. In the limit, for
values of T much smaller than the smallest t sample in the
data, the spectral value is allowed to be any positive number.
The dotted curve in FI1G. 3 highlights this bias by showing the
mean spectrum corresponding to only the noise component of
the spectrum (no signal), clearly showing the increasing bias
at small values of T. This bias must be considered when using
spectral samples of the likelihood function for uncertainty
quantification. The best means for addressing this bias is to
replace the constant prior in our formulation with a more
appropriate one.

Still referring to FIGS. 2 and 3, despite the similarity of the
mean spectrum and the regularized spectrum, we must resist
the temptation to use the mean spectrum as the inversion
result. The inversion result is in fact the entire ensemble of the
solutions (e.g., 10000 spectra) obtained by the Monte Carlo
sampler. Although the mean spectrum is a solution, it is just
one aspect of the solution. The solution ensemble describes
the broad range of solution possibilities, i.e., the uncertainty
of the solution.

FIGS. 2 and 3 further address an application to functionals
of T, spectra, wherein the multiplicity of spectral solutions
becomes useful when they are summarized in terms of statis-
tics. For example, the mean solution shown in FIG. 3
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describes the tendency for these solutions to have a single
spectral peak. Another useful class of statistical summaries is
in terms of functionals of the T, spectrum, e.g., total porosity
and fractional porosity. Here we demonstrate this approach
by estimating the uncertainty in some functionals of the T,
spectrum by Monte Carlo sampling using algorithm TN3.

Referring to FIGS. 4 and 5. FIG. 4 illustrates a histogram of
total porosity, p, computed from 10,000 samples (using TN3)
for the data in FIG. 1a. The total porosity, p, can be obtained
by summing over the T, spectrum. Computing 17 f for each of
the Monte Carlo samples for the data in FIG. 1a, the uncer-
taint, in p is displayed in FIG. 4, yielding the estimate
p=0.1055+0.000996. Estimates from the regularized T, spec-
trainFIG. 1 are0.1017 and 0.1008, _nd from the least-squares
spectra are 0.1025 and 0.1011. Since this is a synthetic
example, we can compute the true value: p=0.100. Our esti-
mate of p is positively biased, being more than six standard
deviations too high. As discussed in the previous section, this
bias is due to the positive spectral bias for small values of T.
The magnitude of this bias, found by computing spectral
samples for data containing only noise (as was done for the
dotted curve in FIG. 3) and then computing total porosity, was
found to be 0.00557+£0.000799. Subtracting this from the
biased  estimate  yields the reasonable value
p=0.0999x0.0013.

It is known that NMR T, spectra are sensitive to pore sizes
in rocks and other porous media. As a result, T, spectra have
been used to obtain capillary curves (see R. L. Kleinberg,
Well logging, in: Encyclopedia of nuclear magnetic reso-
nance, Vol. 8, Wiley, N.Y., 1996, pp. 4960-4969). In particu-
lar, it was found that short T, corresponds to small pores
where water will be held by capillary force. Only water in
larger pores (i.e., large T,) will participate in flow. The frac-
tion of water in large pores (unbound fluid) is important in
determining the permeability of a rock from an NMR mea-
surement. The unbound fluid volume is defined as the inte-
grated volume with T, larger than T _:

P iog 7, AD)d log T,

where T _=0.033 s is a typical cutoff value for sandstones (see
R. L. Kleinberg, Well logging, in: Encyclopedia of nuclear
magnetic resonance, Vol. 8, Wiley, N.Y., 1996, pp. 4960-
4969). The histogram of p,,is shown in FIG. 5, yielding the
estimate p,~0.0870+0.0021. Note that the true value, 0.0859,
is comfortably within the standard error. Estimates from the
regularized T, spectra in FIG. 15 are 0.0847 and 0.0834, and
from the least-squares spectra are 0.0725 and 0.0688.

Thus, although the regularized approach to NMR T, spec-
tral inversion yields a solution that is stable in the presence of
noise, it fails to capture the considerable uncertainty present
in the spectral inversion problem. It can be demonstrated that
the spectral inversion problem can be expressed as Monte
Carlo sampling problem with a non-negative multi-normal
distribution when the Bayesian prior is a constant. Although
this distribution is a special case of a truncated multi-normal
distribution for which samplers exist in the literature, it is
shown that these one-dimensional Gibbs’ samplers are inef-
fective for the T, spectral inversion problem. According to
methods of the invention, provided is a modest extension of
these samplers in which the Gibbs sampling is done in two
dimensions instead of one, and further demonstrate that it is
an efficient sampler for the T, spectral inversion problem.

Using our new sampler, according to at least one method of
the invention, it can be shown that sampling from the likeli-
hood function (i.e., using a constant Bayesian prior) results in
apositive bias in the T, spectrum that increases with decreas-
ing T. The source of this bias is the non-negativity constraint

Eq. 6
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combined with the diminishing number of data points which
constrain the spectral solution with decreasing T. This bias
results in the overestimation of mean total porosity and the
underestimation of its uncertainty. However, since this bias
becomes small with increasing T, it is possible to achieve a
good estimate of unbound porosity, a quantity which does not
depend on the spectrum at small values of T.
Truncated Multi-normal Samplers

Known methods using Monte Carlo samplers for the non-
negative normal distribution are inefficient for T, spectral
inversion. For example, samplers in the literature solve the
more general problem of sampling from a truncated normal
distribution (see G. Rodriguez-Yam, R. Davis, L. Scharf,
Efficient Gibbs’ sampling of truncated multivariate normal
with application to constrained linear regression, Tech. rep.,
Colorado State University (2004)), which are defined by

1 -1 Eq. 7
A(f) o exp[— RN m], Af=b,

where | is the mean vector, =~ is the inverse covariance
matrix, and A and b provide the linear truncation constraints.
A is a potentially non-square matrix. In our case, b=0 and
A=-1. The approaches of the Kermidas reference (TN1
approach) and Rodriguez-Yam reference (TN2 approach) are
compared in Rodriguez-Yam reference (see E. Kermidas, S.
Kaufman (Eds.), Efficient simulation from the multivariate
normal and Student-t distributions subject to linear con-
straints, Computing Science and Statistics: Proceedings of
the 23rd Symposium in the Interface, Interface Foundation of
North America, Fairfax, Va., 1991; and G. Rodriguez- Yam, R.
Davis, L. Scharf, Efficient Gibbs sampling of truncated mul-
tivariate normal with application to constrained linear regres-
sion, Tech. rep., Colorado State University (2004)). A brief
outline of these two approaches is given below for the special
case of a non-negative normal distribution in order to under-
stand why these approaches are inefficient for T, spectral
inversion. A third approach by the Philippe reference, which
is based on perfect sampling by Robert reference, is not suited
to high-dimensional problems and is thus most likely inap-
propriate for use with the methods of the invention (see A.
Philippe, C. P. Robert, Perfect simulation of positive Gauss-
ian distributions, Statistics and Computing 13 (2) (2003) 179-
186; and C. P. Robert, G. Casella, Monte Carlo Statistical
Methods, Springer, N.Y., 2004).

Both TN1 and TN2 are Gibbs’ samplers by the Robert
reference (see C. P. Robert, G. Casella, Monte Carlo Statisti-
cal Methods, Springer, N.Y., 2004). A Gibbs sampler samples
an N-dimensional pdf as a sequence of one-dimensional sam-
pling problems in which the sample for a particular dimen-
sion, say j, is drawn from the conditional pdf «(f|f_), where
f_, represents the vector f with the j-th element removed. Bach
dimension is sampled, with each new sample replacing its old
counterpart in f. After a pass through all dimensions of f, one
sample is of fis generated, and this serves as the starting point
for the next sample. This approach is particularly effective for
a truncated multivariate normal distribution because each
one-dimensional sample is drawn from a truncated univariate
normal distribution for which efficient samplers are available
(see E. Kermidas, S. Kaufman (Eds.), Efficient simulation
from the multivariate normal and Student-t distributions sub-
ject to linear constraints, Computing Science and Statistics:
Proceedings of the 23rd Symposium in the Interface, Inter-
face Foundation of North America, Fairfax, Va., 1991).
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In order to understand the difference between TN1 and
TN2, consider a two-dimensional example problem with a
high correlation between coordinates x and y. The TN1 sam-
pler samples alternately in the x and y dimensions. The large
correlation leads to slow convergence. This example is shown
in FIG. 6a, where the first 20 samples steps, starting from the
point (2, 6), are indicated by arrows. The samples remain
clustered near the starting point because each one-dimen-
sional update step has its variance limited to the narrow con-
ditional variance in the x or y directions. This leads to a strong
correlation between consecutive samples, a problem that is
exacerbated with increasing correlation in 2. The importance
of having a sampler that is robust in the presence of strong
correlation is illustrated in FIG. 7. Here the eigenvalues of the
example of FIG. 1a are seen to grow by a factor of 10° over
just the first 10 eigenvalues. Since these are the lengths of the
principal axes of the covariance ellipsoid, it is clear that the
uncertainty along most of these axes is effectively infinite,
while the uncertainty along a few of these axes is tiny. This
indicates a high degree of correlation.

TN2 improves on the efficiency of the TN1 sampler by
sampling along the directions of the principle axes of the
covariance ellipse (the eigenvector directions) instead of
along the coordinate directions. This allows large steps to be
taken along directions where the uncertainty is large. FIG. 65
shows the first 20 samples from the TN2 sampler for our
two-dimensional problem. Note that TN2 has much better
mixing than TN1, indicating much faster convergence.

The degree of mixing is indicated by the correlation
between samples for each dimension. We analyze this for the
noisy T2 echo data shown in FIG. 1. Because, each dimension
has its own correlation plot, it is decided to plot the correlation
for the dimension of maximum observed correlation, dimen-
sion 61 (T=0.266 s), which nearly coincides with the peak of
the true T2 spectrum. This correlation is compared for
samples from TN1 and TN2 in FIG. 8, indicating that both
samplers require thousands of samples between each inde-
pendent sample. This is a clear illustration of the inefficiency
of these algorithms for T2 spectral inversion.

The reason for this poor convergence can be understood in
terms of the structure of the multi-normal distribution in the
T2 spectral inversion problem. This structure is illustrated by
two-dimensional conditional covariance plots in FIGS. 9a
and 9b. Starting with f defined by Eq. 3 for the data shown in
FIG. 1a, we examined all consecutive pairs of conditional
pdfs and found 86 of the form shown in FIG. 9a and 13 of'the
form shown in FIG. 95, with the latter more likely near the
peak of the spectrum. We demonstrated earlier (see FIG. 8)
that TN2 has much better mixing than TN1 for latter form of
covariance because the sample steps can jump long distances
along the major axes of the covariance ellipse. However, this
strategy fails for the covariance structure in FIG. 9a. For
example, when the current state is at the origin in FIG. 9a, it
is clear that no jump will be allowed along the major axis of
the ellipse (along the contour direction) because that direction
is blocked by the non-negativity constraint, and jumps along
the minor axis (perpendicular to the contour direction) will
feel a strong pull toward the origin, perpetuating the problem.
Hence neither TN1 nor TN2 will converge well when both
types of covariance are present.

Two-dimensional Slice Sampler

An excellent description of the slice sampler is given in the
Robert reference (see C. P. Robert, G. Casella, Monte Carlo
Statistical Methods, Springer, N.Y., 2004). A summary of the
algorithm is provided below. For a pdf given by m(x) and a
beginning state x,, a uniform random sample, u, is drawn
from the interval O=u=mn(x,). Then a uniform random sample
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of'x is drawn from the domain defined by mt(x)zu. This new
state, labeled x,, is an estimate of the random sample satis-
fying m(x). Iterating this procedure leads to an independent
sample from nt(x).

For the truncated normal distribution we can simplify the
slice sampler algorithm by defining m(x,)xe®™ with
O(x)=(x—u) H(x-p) and H=2"'=0">G?G. Then a uniform
sample of u is drawn from the interval 0<u<1, and ®(x,)=P
(Xo)-2 log u. A uniform sample of x is then drawn from the
do-main ®(x)=®(x,) with x=0. We use rejection sampling to
obtain a uniform sample from this truncated elliptical domain
using the algorithm presented in Truncated Multi-normal
Samplers section above noted in the Philippe reference (see
A.Philippe, C. P. Robert, Perfect simulation of positive Gaus-
sian distributions, Statistics and Computing 13 (2) (2003)
179-186).

The two-dimensional conditional values of p and H for
dimensions i and j, denoted 0,, and H,,, are given by

7N TS JNL 0NN Ry (TR RS0 2 0 2 A

The symbol m represents the pair of indices i and j. The
subscript m on a vector or matrix indicates the selection of
those elements. The subscript -m on a vector indicates the
selection of all elements except those of m, and on a matrix it
indicates the selection of the columns m minus the rows m.
The subscript -mm indicates the selection of all rows and
columns except those of m.

To find an expression for am that avoids computing the
inverse of the poorly conditioned GG matrix, we use the
inverse formula for a partitioned matrix to get

Eq. 8

G ) FHp=H_ 8,

—mt Lmm

71H,mT

2 H o H )™ Eq.9
yielding
Byt~ o) H (5= Eq. 10

FIG. 10 shows methods of the invention that may be imple-
mented in well logging using any nuclear magnetic resonance
(NMR) well logging apparatus known in the art. Embodi-
ments of the invention may be implemented with NMR well
logging devices without the need for hardware modifications.
Further, FIG. 10 shows a flow diagram of a routine that can be
used in programming a processor in implementing certain
embodiments of the invention. The routine may be stored on
or provided over a computer or machine readable medium,
such as read-only memory (ROM); random access memory
(RAM); magnetic disc or tape; a CD-ROM or other optical
storage media; electrical, optical, acoustical or other forms of
propagated signals; and the like. The processor may be a
downhole processor, an uphole processor, or a combination
thereof. The processor also may include a remote processor
that may be used for implementing some of the data inversion
and interpretation parts of the routine.

Prior to the beginning of the programmed routine and as
shown at 1010, a static magnetic field is applied to a region of
investigation within an earth formation surrounding a bore-
hole. Theoretically, the earth’s magnetic field could be used
as the static magnetic field. For most practical purposes,
however, this is not preferred. The static magnetic field and
field gradient (when desired) typically are applied using a
logging tool having a permanent magnet or an array of per-
manent magnets.

The programmed routine begins at block 1015, which rep-
resents initializing parameters for the magnetic field pulse
sequence. The sequence parameters may include, for
example, i=1, a recovery time, a wait time, T,, T,, etc.,
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depending on the pulse sequence to be applied. In some
embodiments, phase-cycling instructions also may be intro-
duced into the programmed routine at 1015. Generating a
magnetic field pulse sequence in the region of investigation is
represented by block 1020. Magnetic resonance signals from
the region of investigation are detected in block 1022 and
stored.

Some embodiments of the invention involve repeatedly
applying the magnetic field pulse sequence, or involve apply-
ing a plurality of magnetic field pulse sequences. A parameter
R may be used (set, perhaps, at block 1015) to indicate a total
number of magnetic field pulse sequences to be generated and
applied. Decision block 1025 represents querying whether a
counter, r, equals R. If no, then r is incremented, as repre-
sented in block 1026, and, if necessary, sequence parameters,
such as recovery time or phase-cycling instructions, are var-
ied as represented in block 1027, before the routine is
returned to block 1020 where the next sequence is generated
in the region of investigation. If =R when queried at decision
block 1025, then the data acquisition for the measurement is
complete and the routine continues on to block 1030 where
the data inversion begins. Depending on the particular NMR
measurement being performed, more than one counters and
more than one iterative loop may be required.

The Decision block 1030 represents acquiring NMR data
from each of the plurality of NMR measurements. Decision
block 1035 represents performing data inversion using a ran-
dom-sampler as describe above, to generate an ensemble of
spectra, so as to extract information about a fluid in a subter-
ranean environment, e.g., a rock in a formation. Finally, Deci-
sion block 1040 represents analyzing the performed random-
sampler inversion results to extract information about
subterranean environment, e.g., a rock in a formation.

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-
tion, it is to be understood that the particular embodiments
shown and described by way of illustration are in no way
intended to be considered limiting. For example, methods of
the invention allow information about a system of nuclear
spins, such as in a fluid in a rock or the like, to be extracted,
either in a laboratory setting or in well-logging applications,
e.g., oilfield applications. Some embodiments may be used to
extract two-dimensional maps of parameters of interest, such
as T, and T,, T,/T, and T,, D and T,, etc., which may prove
useful in distinguishing between fluids and/or between dif-
ferent pore environments within a rock. Further, the invention
has been described with reference to particular preferred
embodiments, but variations within the spirit and scope of the
invention will occur to those skilled in the art. It is noted that
the foregoing examples have been provided merely for the
purpose of explanation and are in no way to be construed as
limiting of the present invention. While the present invention
has been described with reference to an exemplary embodi-
ment, it is understood that the words, which have been used
herein, are words of description and illustration, rather than
words of limitation. Changes may be made, within the pur-
view of the appended claims, as presently stated and as
amended, without departing from the scope and spirit of the
present invention in its aspects. Although the present inven-
tion has been described herein with reference to particular
means, materials and embodiments, the present invention is
not intended to be limited to the particulars disclosed herein;
rather, the present invention extends to all functionally
equivalent structures, methods and uses, such as are within
the scope of the appended claims.
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What is claimed:

1. A method that determines a property of a substance, the
method comprising:

a) performing a plurality of NMR measurements on the
substance using a nuclear magnetic resonance (NMR)
apparatus in order to acquire NMR data;

b) performing data inversion on the acquired NMR data
using a random-sampler in order to generate an
ensemble of NMR parameter spectra, wherein each
NMR parameter spectrum within the ensemble of NMR
parameter spectra is a solution that is consistent with the
acquired NMR data; and

¢) determining both the property of the substance and an
error associated with the property of the substance by
analyzing the generated ensemble of NMR parameter
spectra.

2. The method of claim 1, wherein the acquired NMR data

comprises NMR spin echoes.

3. The method of claim 1, wherein the acquired NMR data
from each of the plurality of NMR measurements are
expressed as

M, (T, ek (T, o x,y)E (XY Jdxdy + B, (T,,T,), where
M, (t,,T,) represents the acquired NMR data; k repre-
sents the kernel function; T, and T, are first and second
experimental parameters, respectively, associated with
the NMR measurement; x and y are parameters related
to the system of spins; .(x,y) is a joint probability den-
sity function of x and y; and E, (t,,T,) represents noise
associated with the acquired NMR data.

4. The method of claim 3, further comprising discretizing
the acquired NMR data and expressing the acquired NMR
data as M=KF+E, where matrices K contain entries corre-
sponding to k, respectively, and F and E represent discretized
versions of f,(x,y) and E,(T,,T,).

5. The method of claim 1, wherein the random-sampler is a
Monte Carlo sampler.

6. The method of claim 1, wherein the property of the
substance includes one or more characteristics of a fluid in
communication with a formation.

7. The method of claim 6, wherein the generated ensemble
of NMR parameter spectra includes two or more NMR
parameter spectra, such that the one or more characteristics of
the fluid are calculated from each spectrum of the two or more
NMR parameter spectra.

8. The method of claim 1, wherein analyzing the ensemble
of NMR parameter spectra comprises determining at least
one of a porosity function, a bound fluid function, and an
unbound fluid function associated with the NMR data.

9. The method of claim 1, wherein analyzing the ensemble
of NMR parameter spectra comprises determining at least
one of an oil saturation function and a log-mean T, function
associated with the NMR data.

10. The method of claim 1, wherein the acquired NMR data
is one of one-dimensional (1D), two-dimensional (2D), or
multi-dimensional NMR data.

11. A method that determines a property of a formation, the
method comprising:

a) applying a sequence of magnetic field pulses to the
formation using a magnetic resonance apparatus,
wherein the sequence is described by at least two param-
eters and each parameter includes two or more settings;

b) detecting magnetic resonance signals for each ofthe two
or more settings for each parameter data using the mag-
netic resonance apparatus in order to acquire magnetic
resonance;

¢) performing data inversion on the acquired magnetic
resonance data using a random-sampler in order to gen-
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erate an ensemble of magnetic resonance spectra,
wherein each magnetic resonance spectrum within the
ensemble of magnetic resonance spectra is a solution
that is consistent with the acquired magnetic resonance
data; and

d) determining both the property of the formation and an

error associated with the property by analyzing the gen-
erated ensemble of magnetic resonance spectra, wherein
the property ofthe formation comprises at least one of (i)
apetrophysical property of the formation and (ii) a fluid
property of a fluid within the formation.

12. The method of claim 11, further comprising repeating
steps a) through d) and incorporating at least one different
setting from the two or more parameter settings for at least
one parameter of the at least two parameters.

13. The method of claim 11, wherein a first parameter of
the at least two parameters comprises a longitudinal relax-
ation time associated with the fluid within the formation.

14. The method of claim 11, wherein the first parameter
comprises a transverse relaxation time associated with the
fluid within the formation.

15. The method of claim 11, wherein the first parameter
comprises a diffusion sensitive parameter whereby diffusion
is determinable.

16. The method of claim 11, wherein a second parameter of
the at least two parameters comprises a longitudinal relax-
ation time associated with the fluid within the formation.

17. The method of claim 11, wherein the second parameter
comprises a transverse relaxation time associated with the
fluid within the formation.

18. The method of claim 11, wherein the second parameter
comprises a diffusion sensitive parameter whereby diffusion
is determinable.

19. The method of claim 11, wherein analyzing the gener-
ated ensemble of magnetic resonance spectra comprises
determining at least one of a porosity function, a bound fluid
function, and a unbound fluid function associated with the
acquired magnetic resonance data.

20. The method of claim 11, wherein analyzing the gener-
ated ensemble of magnetic resonance spectra comprises
determining at least one of an oil saturation function and a
log-mean T, function associated with the acquired magnetic
resonance.
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21. The method of claim 11, wherein the acquired magnetic
resonance data is one of one dimensional (1D), two dimen-
sional (2D), or multi-dimensional NMR data.

22. A logging tool that is moveable through a borehole, the
logging tool comprising:

anuclear magnetic resonance (NMR) apparatus configured

to (i) perform a plurality of NMR measurements on at

least one region of investigation within a formation sur-
rounding the borehole and (ii) acquire NMR data from
each of the plurality of NMR measurements; and

a processor coupled with the logging tool, the processor

being programmed with instructions which, when

executed by the processor, cause the processor to:

(a) perform data inversion on the acquired NMR data
using a random-sampler in order to generate an
ensemble of NMR parameter spectra, wherein each
NMR parameter spectrum within the ensemble of
NMR parameter spectra is a solution that is consistent
with the acquired NMR data; and

(b) determine both a property of the at least one region of
investigation, within the formation surrounding the
borehole, and an error associated with the property, by
analyzing the generated ensemble of NMR parameter
spectra, wherein the property of the at least one region
of investigation within the formation comprises at
least one of (i) a petrophysical property of the forma-
tion and (ii) a fluid property of a fluid within the
formation.

23. The apparatus of claim 22, wherein acquiring NMR
data is in real time.

24. The apparatus of claim 22, wherein the results of the
data inversion are communicated to a earth surface in real
time or stored in the logging tool for later communication.

25. The apparatus of claim 22, wherein the acquired NMR
datais one of one dimensional (1D), two dimensional (2D), or
multi-dimensional NMR data.

26. The apparatus of claim 22, wherein analyzing the gen-
erated ensemble of NMR parameter spectra comprises deter-
mining at least one of a total porosity function and a fractional
porosity function associated with the acquired NMR data.
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